A Simple Procedure for Estimating the Diffusion Coefficient from Sorptive Experiments in the Infinite Bath

The sorption kinetics of penetrants (gas, vapor, dye) in an infinite polymeric cylinder with radius r (for example, the fiber) may be described by the Hill infinite series¹ as

$$R_{t} = \frac{M_{t}}{M_{\infty}} = 1 - \sum_{i=1}^{\infty} \frac{4}{q_{i}^{2}} \exp(-q_{i}^{2}T)$$
(1)

where R_t is the relative amount of penetrant; M_t and M_{∞} are the amounts of the penetrant in the fiber at time t and equilibrium $(t \to \infty)$, respectively; $T(=Dt/r^2)$ is the dimensionless time; D is the diffusion coefficient; and q_i is the *i*th positive root of the Bessel function of first kind and order zero.

Provided that concentration of penetrant on the fiber surface (infinite bath) and D are kept constant, eq. (1) can be derived from Fick's second law of diffusion.

From the experimental data $(M_{t_i}, t_i)_{i=1,...n}$, it is necessary to estimate the diffusion coefficient D (generally also the equilibrium amount of penetrant M_{∞}). This is a rather complicated problem which is usually solved by means of nonlinear regression (after approximation of infinite series by several members is accomplished) with suitable criteria. In most cases the least-squares criterion is applied.²

A considerable simplification of the calculations is obtained by using the method of statistical moments.² Zikánová and Kočiřík³ state that the first statistical moment M_1 of the kinetic curve (i.e., the dependence R_t versus t) may be expressed by the relationship

$$M_{1} = \int_{0}^{\infty} t \frac{dR_{t}}{dt} dt = \int_{0}^{\infty} (1 - R_{t}) dt$$
(2)

Substitution of eq. (1) into eq. (2) gives the well-known expression

$$M_1 = \frac{r^2}{8D} \tag{3}$$

From eq. (2) it follows that M_1 is the area over the sorption curve confined by the line $R_t = 1$. By applying the numeric integration, it is possible to determine M_1 and then from eq. (3) the diffusion coefficient D.

However, there is a more simple method available to assess the first statistical moments M_1 by a suitable approximate function. In a number of works⁴⁻⁶ it has been verified that eq. (1) may successfully be approximated by simple kinetic equation:

$$R_t = \sqrt{1 - \exp(-Kt)} \tag{4}$$

where K is the apparent rate constant. Validity of this equation can be proved by plotting $-\ln(1 - R_{t_i}^2)$ vs. t_i for all experimental data. As a result, a straight-line is obtained passing through the origin. A number of simple methods for estimating the parameters K and M_{∞} from eq. (4) are given in the literature⁶ (all for cases where C_{∞} is not known beforehand).

Substituting from eq. (4) into eq. (2) leads to eq. (5):

$$M_1^* = 2(1 - \ln 2)K^{-1} \tag{5}$$

where M_1^* is the first statistical moment of the kinetic curve expressed by eq. (4).

In comparing the first moments M_1 with M_1^* , the following relationship results:

$$D = \frac{Kr^2}{16(1 - \ln 2)} = 0.2037Kr^2 \tag{6}$$

The above equation defines the relation between the constant K and the diffusion coefficient D. By combining eq. (6) with eq. (4) and rearranging, the following equation may be derived:

$$T_i^* = -0.2037 \ln[1 - R_{t_i}^2] \tag{7}$$

Comparison of the values T_i determined from eq. (1) (40 members of infinite series) with the values

Journal of Applied Polymer Science, Vol. 25, 2429–2430 (1980) © 1980 John Wiley & Sons, Inc. 002:

0021-8995/80/0025-2429\$01.00

 T_i^* computed from eq. (7) in the range $0.1 \le R_t \le 0.98$ gave relative errors $100 (T_i - T_i^*)/T_i^*$ less than 5%. This demonstrates the applicability of eq. (4) for approximation of eq. (1). In estimating the diffusion coefficient D from experimental data, it is possible, for a given M_{∞} , to determine the constant K as a slope of the dependence $-\ln(1 - R_{t_i}^2)$ vs. t_i and, subsequently, from eq. (6) the value D. In case M_{∞} is not known, it is necessary to seek the parameters M_{∞} and K by fitting experimental data using eq. (4).

Compared with other methods for approximate calculation of D in use (i.e., from the initial slope of the dependence R_t vs. \sqrt{t}), the one suggested here has the following merits: (1) it takes into account the whole course of sorption (all experimental points), and (2) it eliminates random errors of measured values $M_{t_i}(R_{t_i})$. Approximate eq. (4) was applied to determine the first statistical moment from experimental points (the area over sorption curve confined by the line $R_t = 1$). Equation (3) is not approximate. This means that resulting D values obtained by this method are very close to those computed from eq. (1) by nonlinear curve fitting.

To summarize, a very simple method for estimating the diffusion coefficient D based on eqs. (4) and (6) has been derived. This procedure provides very accurate estimates of D and can easily be applied for desktop as well as pocket calculators. The method enables rough validity testing of the Hill infinite series.

References

1. A. V. Hill, Proc. Roy. Soc. Ser. B., 104, 39 (1928).

2. J. Militký, Mathematical Modelling and Optimization of Technological Processes, Script for Postgraduate Course, Inst. Chem. Technol., Pardubice, 1978.

3. A. Zikánová and M. Kočiřík, Coll. Czech. Chem. Commun., 36, 1225 (1971).

4. J. Cegarra and P. Puente, Text. Res. J., 37, 343 (1967).

5. J. Militký, J. Všianský, and A. Sládeček, Chem. Fibres, to appear.

6. J. Militký, J. S. D. C., 95, 327 (1979).

JIŘÍ MILITKÝ

Research Institute for Textile Finishing 544 28 Dvůr Králové nad Labem Czechoslovakia

JIŘÍ RAIS

College of Mechanical and Textile Engineering Liberec, Czechoslovakia

Received February 18, 1980 Accepted June 5, 1980